Proof. Statement (4.2.7) is an immediate consequence of (4.2.5). To prove (4.2.8), suppose that the basic columns in \mathbf{A} are in positions $b_{1}, b_{2}, \ldots, b_{r}$, and the nonbasic columns occupy positions $n_{1}, n_{2}, \ldots, n_{t}$, and let \mathbf{Q}_{1} be the permutation matrix that permutes all of the basic columns in \mathbf{A} to the left-hand side so that $\mathbf{A Q}_{1}=\left(\begin{array}{ll}\mathbf{B}_{m \times r} & \mathbf{N}_{m \times t}\end{array}\right)$, where \mathbf{B} contains the basic columns and \mathbf{N} contains the nonbasic columns. Since the nonbasic columns are linear combinations of the basic columns-recall (2.2.3) - we can annihilate the nonbasic columns in \mathbf{N} using elementary column operations. In other words, there is a nonsingular matrix \mathbf{Q}_{2} such that $\left(\begin{array}{ll}\mathbf{B} & \mathbf{N}\end{array}\right) \mathbf{Q}_{2}=\left(\begin{array}{ll}\mathbf{B} & \mathbf{0}\end{array}\right)$. Thus $\mathbf{Q}=\mathbf{Q}_{1} \mathbf{Q}_{2}$ is a nonsingular matrix such that $\mathbf{A Q}=\mathbf{A Q}_{1} \mathbf{Q}_{2}=\left(\begin{array}{ll}\mathbf{B} & \mathbf{N}\end{array}\right) \mathbf{Q}_{2}=\left(\begin{array}{ll}\mathbf{B} & \mathbf{0}\end{array}\right)$, and hence $\mathbf{A} \stackrel{\text { col }}{\sim}\left(\begin{array}{ll}\mathbf{B} & \mathbf{0}\end{array}\right)$. The conclusion (4.2.8) now follows from (4.2.6).

Example 4.2.3

Problem: Determine spanning sets for $R(\mathbf{A})$ and $R\left(\mathbf{A}^{T}\right)$, where

$$
\mathbf{A}=\left(\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 4 & 1 & 3 \\
3 & 6 & 1 & 4
\end{array}\right)
$$

Solution: Reducing \mathbf{A} to any row echelon form \mathbf{U} provides the solution-the basic columns in A correspond to the pivotal positions in \mathbf{U}, and the nonzero rows of \mathbf{U} span the row space of \mathbf{A}. Using $\mathbf{E}_{\mathbf{A}}=\left(\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ produces

$$
R(\mathbf{A})=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\right\} \quad \text { and } \quad R\left(\mathbf{A}^{T}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)\right\} .
$$

So far, only two of the four fundamental subspaces associated with each matrix $\mathbf{A} \in \Re^{m \times n}$ have been discussed, namely, $R(\mathbf{A})$ and $R\left(\mathbf{A}^{T}\right)$. To see where the other two fundamental subspaces come from, consider again a general linear function f mapping \Re^{n} into \Re^{m}, and focus on $\mathcal{N}(f)=\{\mathbf{x} \mid f(\mathbf{x})=\mathbf{0}\}$ (the set of vectors that are mapped to $\mathbf{0}$). $\mathcal{N}(f)$ is called the nullspace of f (some texts call it the kernel of f), and it's easy to see that $\mathcal{N}(f)$ is a subspace of \Re^{n} because the closure properties (A1) and (M1) are satisfied. Indeed, if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{N}(f)$, then $f\left(\mathbf{x}_{1}\right)=\mathbf{0}$ and $f\left(\mathbf{x}_{2}\right)=\mathbf{0}$, so the linearity of f produces

$$
\begin{equation*}
f\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0} \quad \Longrightarrow \quad \mathbf{x}_{1}+\mathbf{x}_{2} \in \mathcal{N}(f) . \tag{A1}
\end{equation*}
$$

Similarly, if $\alpha \in \Re$, and if $\mathbf{x} \in \mathcal{N}(f)$, then $f(\mathbf{x})=\mathbf{0}$ and linearity implies

$$
\begin{equation*}
f(\alpha \mathbf{x})=\alpha f(\mathbf{x})=\alpha \mathbf{0}=\mathbf{0} \quad \Longrightarrow \quad \alpha \mathbf{x} \in \mathcal{N}(f) . \tag{M1}
\end{equation*}
$$

By considering the linear functions $f(\mathbf{x})=\mathbf{A x}$ and $g(\mathbf{y})=\mathbf{A}^{T} \mathbf{y}$, the other two fundamental subspaces defined by $\mathbf{A} \in \Re^{m \times n}$ are obtained. They are $\mathcal{N}(f)=\left\{\mathbf{x}_{n \times 1} \mid \mathbf{A x}=\mathbf{0}\right\} \subseteq \Re^{n}$ and $\mathcal{N}(g)=\left\{\mathbf{y}_{m \times 1} \mid \mathbf{A}^{\mathbf{T}} \mathbf{y}=\mathbf{0}\right\} \subseteq \Re^{m}$.

