Proof. Statement (4.2.7) is an immediate consequence of (4.2.5). To prove (4.2.8), suppose that the basic columns in \mathbf{A} are in positions b_1, b_2, \ldots, b_r , and the nonbasic columns occupy positions n_1, n_2, \ldots, n_t , and let \mathbf{Q}_1 be the permutation matrix that permutes all of the basic columns in \mathbf{A} to the left-hand side so that $\mathbf{A}\mathbf{Q}_1 = (\mathbf{B}_{m \times r} \quad \mathbf{N}_{m \times t})$, where \mathbf{B} contains the basic columns and \mathbf{N} contains the nonbasic columns. Since the nonbasic columns are linear combinations of the basic columns—recall (2.2.3)—we can annihilate the nonbasic columns in \mathbf{N} using elementary column operations. In other words, there is a nonsingular matrix \mathbf{Q}_2 such that $(\mathbf{B} \quad \mathbf{N}) \mathbf{Q}_2 = (\mathbf{B} \quad \mathbf{0})$. Thus $\mathbf{Q} = \mathbf{Q}_1 \mathbf{Q}_2$ is a nonsingular matrix such that $\mathbf{A}\mathbf{Q} = \mathbf{A}\mathbf{Q}_1\mathbf{Q}_2 = (\mathbf{B} \quad \mathbf{N}) \mathbf{Q}_2 = (\mathbf{B} \quad \mathbf{0})$, and hence $\mathbf{A} \stackrel{\text{col}}{\sim} (\mathbf{B} \quad \mathbf{0})$. The conclusion (4.2.8) now follows from (4.2.6). ■

Example 4.2.3

Problem: Determine spanning sets for $R(\mathbf{A})$ and $R(\mathbf{A}^T)$, where

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}.$$

Solution: Reducing **A** to any row echelon form **U** provides the solution—the basic columns in **A** correspond to the pivotal positions in **U**, and the nonzero rows of **U** span the row space of **A**. Using $\mathbf{E}_{\mathbf{A}} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ produces

$$R\left(\mathbf{A}\right) = span\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \; \begin{pmatrix} 2\\1\\1 \end{pmatrix} \right\} \quad \text{ and } \quad R\left(\mathbf{A}^T\right) = span\left\{ \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}, \; \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\}.$$

So far, only two of the four fundamental subspaces associated with each matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ have been discussed, namely, $R(\mathbf{A})$ and $R(\mathbf{A}^T)$. To see where the other two fundamental subspaces come from, consider again a general linear function f mapping \mathbb{R}^n into \mathbb{R}^m , and focus on $\mathcal{N}(f) = \{\mathbf{x} \mid f(\mathbf{x}) = \mathbf{0}\}$ (the set of vectors that are mapped to $\mathbf{0}$). $\mathcal{N}(f)$ is called the **nullspace** of f (some texts call it the **kernel** of f), and it's easy to see that $\mathcal{N}(f)$ is a subspace of \mathbb{R}^n because the closure properties $(\mathbf{A1})$ and $(\mathbf{M1})$ are satisfied. Indeed, if $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{N}(f)$, then $f(\mathbf{x}_1) = \mathbf{0}$ and $f(\mathbf{x}_2) = \mathbf{0}$, so the linearity of f produces

$$f(\mathbf{x}_1 + \mathbf{x}_2) = f(\mathbf{x}_1) + f(\mathbf{x}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0} \implies \mathbf{x}_1 + \mathbf{x}_2 \in \mathcal{N}(f).$$
 (A1)

Similarly, if $\alpha \in \Re$, and if $\mathbf{x} \in \mathcal{N}(f)$, then $f(\mathbf{x}) = \mathbf{0}$ and linearity implies

$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0} \implies \alpha \mathbf{x} \in \mathcal{N}(f).$$
 (M1)

By considering the linear functions $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ and $g(\mathbf{y}) = \mathbf{A}^T\mathbf{y}$, the other two fundamental subspaces defined by $\mathbf{A} \in \mathbb{R}^{m \times n}$ are obtained. They are $\mathcal{N}(f) = \{\mathbf{x}_{n \times 1} \mid \mathbf{A}\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^n$ and $\mathcal{N}(g) = \{\mathbf{y}_{m \times 1} \mid \mathbf{A}^T\mathbf{y} = \mathbf{0}\} \subseteq \mathbb{R}^m$.